湧水に浸すと発電できる「湧水温度差発電」
流れ去る湧水の熱エネルギーを電気として有効利用
茨城大学大学院理工学研究科の 一ノ瀬彩 助教と、産業技術総合研究所(産総研)物理計測標準研究部門 応用電気標準研究グループ 天谷康孝 研究グループ付、地圏資源環境研究部門 地下水研究グループ 井川怜欧 上級主任研究員は共同で、湧水と大気の温度差を利用した「湧水温度差発電」が可能なことを実証しました。発電した電力を用いることで電池なしで湧水の温度を計測し、無線通信で自動的にデータ収集することに成功しました。この技術は、固体の熱と電気の相互変換作用である熱電発電を利用するので、水車のような可動部を必要とせず、水の流れがない水路でも発電が可能となります。また、太陽光が届かない日陰や、夜間も連続的に発電することができます。この技術を用いれば、メンテナンスのコストを抑えた連続的な環境計測も可能となり、人為的な活動などによる湧水の変化を早期に発見することができます。このように、湧水の持つ熱エネルギーを電力として活用する多面的価値を創出することで、地域資源である湧水の保全と持続可能な利用に対する貢献が期待されます。一ノ瀬助教は、これまで松本をフィールドに湧水などの地域資源を核とするデザイン手法の研究を進めており、今回の成果につながる一連のプロジェクトでは、研究の着想?計画、装置開発の形態検討?製作条件の整理、井戸?水路の悉皆調査、景観評価、装置デザインを担当しています。
>>くわしくはプレスリリース(PDF)をご覧ください
開発の社会的背景
研究の経緯
研究の内容
湧水の温度は、地表の気温変化の影響を受けにくく、昼夜、1年間を通してほぼ一定な性質があるので、大気と湧水の間には自然な温度差があります。温度差を電力に変換する熱電発電を用い、湧水に浸すだけで発電する「湧水温度差発電」を考案し、安定した電力供給が可能な湧水温度差発電装置を開発しました。また開発した発電装置を実際に湧水に設置して発電することで、電池なしで水温を計測し、無線通信で自動的にデータ収集できることを実証しました。
長野県松本市(緯度:36.23°N、経度:137.97°E)の水路に温度差発電装置を設置して発電実験を行いました。松本市の市街地には豊富な井戸や水路が存在します。発電試験場の選定にあたり、産総研地質調査総合センターが調査、公開している日本水理地質図や地下水研究グループの研究成果などを活用しました。また、市街地に張り巡らされた水路や点在する井戸の幅、水温、水深などの熱環境の調査を地元住民の協力のもと行い、設置場所を決定しました(図2)。
湧水温度差発電は、大気と湧水の温度差を利用した発電です。湧水の温度は年間を通して約15 ℃とほぼ一定ですが、その一方で、気温は季節によって変化するため、それに伴い発電量も変化します。2022年5月、2022年8月、2022年11月、2023年1月(2月)の異なる季節に発電試験を行いました(図3(a)~(d))。1日の発電量の平均値は、5月は3.1 mW、8月は4.2 mW、11月は1.1 mW、1月は14.5 mWでした。湧水と大気の温度が等しくなる期間を除くと、ワイヤレス温度記録計を年間通して安定に動作できる電力が得られることが示されました。特に、気温が氷点下となる1月が最も効率よく発電できました。これは、湧水と大気との温度差が最も大きくなる季節だからです。また、夜間も温度差が生じるため、昼夜を問わず発電することができました。
また、2022年5月に発電した電力を温度記録計に給電する実験を行いました。湧水の温度は、一日を通して安定しており、約15 ℃でした。一方で、試験期間中の大気の温度は、天気はおおむね晴天だったことから、日中は30 ℃に達し、夜間は17 ℃に下がりました。ワイヤレス温度記録計には、電池を搭載していませんが、水路に装置を置くとキャパシターへの充電が始まり、所定の充電電圧に達すると起動し、水温を計測することに成功しました。測定データをスマートフォンにワイヤレスで送信することもできました(図4(a))。最後に、湧水温度差発電装置により給電した温度記録計により得られた水温測定の結果を示します(図4(b))。日中、日差しの影響による熱で湧水の温度はわずかに上昇するものの、夜間は、温度が一定となる様子を測定することに成功しました。この結果は、電池を搭載した温度記録計により得られた結果とも一致しました。このように、キャパシターと組み合わせることで、湧水と大気の温度差が小さくなっても、キャパシターに余分に充電した電力により、温度記録計を連続的に動作させ、無線通信でデータ収集できることを実証しました。また、湧水の熱エネルギーを電力として利用しているので、湧水と大気との間に温度差がある限り、電池切れを心配する必要もありません。この技術を用いれば、湧水の温度や気温だけでなく、湿度、圧力など、さまざまな環境計測も可能です。連続的な環境計測により、人為的な活動などによる湧水の変化の早期発見に貢献できます。このように、湧水の持つ多面的価値を示すことで、地域住民の関心を取り戻すことが可能となり、その結果として、失われつつある地域の水辺環境の復元を含めた地域資源の保全と持続的な利活用につながることが期待されます。
今後の予定
今回の技術で重要となる湧水の元である地下水の存在については、先に記したTNFDやネイチャーポジティブのみならず、2014年に施行された水循環基本法において、国や地方公共団体に対し、健全な水循環の維持を目的とした地下水管理のための情報収集や解析、分析などの努力義務が課せられています。行政では地下水の保全や管理に対する予算や人員の確保が長年の課題とされてきましたが、本システムを進化させ、水位や水質など他の項目も含めた電池レスの遠隔モニタリングシステムを確立することができれば、課題であった人的および財政的負担を軽減させることが可能となります。また、住民へのアンケートを踏まえた微小電力の活用方法に関する分析や、景観へ配慮した発電装置のデザインに関する基礎的研究も一体的に進めることで、地域資源としての湧水の価値を高めていきたいと考えています。
論文情報
- 掲載誌:Energy Conversion and Management
- 論文タイトル:Harvesting thermal energy from spring water using a flexible thermoelectric generator
- 著者:Yasutaka Amagai?, Aya Ichinose?, Reo Ikawa, Moeno Sakamoto, Takumi Ogiya, Momoe Konishi, Kenjiro Okawa, Norihiko Sakamoto, and Nobu-Hisa Kaneko
?両著者はこの研究の共同筆頭著者 - DOI:doi.org/10.1016/j.enconman.2024.118605